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ABSTRACT 
 

Validation is an essential issue in the growing field of agent-based simulation (ABS), as 
ABS has become a prominent paradigm in the study of social complex systems. 
However, the main difficulty faced in this validation process is the lack of techniques and 
tools to assure the reliability of models. Thus, the validation of models is still a tedious 
task. In our previous work, we proposed cross-element validation. This process consists 
of performing the validation within a model by comparing the simulation results of the 
model under several instances of some of its composite elements. Elements are, for 
instance, learning mechanisms or network iteration topologies. Even though it is 
relatively simple, this validation process requires performing several simulations of the 
model under the possible combinations that exist among a certain number of instances of 
some elements. In other words, it requires several implementations of the model to 
account for the above-mentioned combinations of elements. Therefore, tools to support 
this validation process are required. To support the cross-element validation process for 
ABS models, this paper presents cross-element validation for multi-agent-based 
simulation (X-MAS). This tool provides facilities for performing easy cross-element 
validation of ABS models and also facilitates the implementation of general-purpose 
ABS models. To illustrate the potential of X-MAS, a cross-element validation of a 
bargaining game model was performed by evaluating several learning mechanisms 
applied to the agents. The findings showed that simulation results can be strongly 
affected by even small variations in the elements. Therefore, cross-element validation 
should be performed before deep analysis of the implemented model. 
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INTRODUCTION 
 

Although agent-based simulation (ABS) is becoming a prominent paradigm in the study 
of complex social sciences, it still lacks the validation techniques and tools to assure the 
reliability of the models. One available technique is the so-called docking or alignment of 
computational models proposed by Axtell et al. (1996). This is a validation process where two 
models that deal with the same phenomenon are compared, in order to determine whether the 
results from one computational model match the results of another model. This process requires 
the replication of one model based on the other model’s framework. However, the following 
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difficulties make it rather awkward: (1) models may be developed for different purposes, 
(2) common parts between models may be small in number, and (3) fair evaluation criteria may 
be difficult to define in order to guarantee the seeming equivalence of the models’ simulation 
results. 

 
In order to overcome the above-mentioned difficulties, our previous work proposed the 

concept of cross-element validation as a process that performs the validation within a model 
(Takadama et al. 2003), as opposed to docking, which consists of validation between models. 
Cross-element validation consists of detecting, analyzing, and comparing the model’s macro-
behavior under different variations of some of its composite elements. Elements are, for instance, 
how individual agents store knowledge, how to perform learning, or what iteration network 
topology is used. By understanding whether and how the elements’ implementations affect the 
model’s overall behavior, the reliability of the ABS model is expected to increase. 

 
Cross-element validation must perform several simulations of one model with variations 

of the composite elements. The number of simulations exponentially increases as both the 
number of replacements of a certain element and the number of elements to be evaluated 
increase. Thus, the efficient performance of each simulation is required. Another difficulty is the 
modification of the model implementations, which is cumbersome. Because of these facts, even 
relatively simple cross-element validation process is a tedious task. Therefore, tools with the 
following three requirements are indispensable: (1) easy model implementation, (2) flexibility to 
simplify model element exchanges, and (3) the construction of efficient programs to accelerate 
the simulations. 

 
Several ABS libraries and tools are available in the community for facilitating model 

implementation, such as Swarm (Swarm Development Group 2005), Repast (Repast 2005), and 
MASON (George Mason University 2005). Unfortunately, their use in the cross-element 
validation of models is quite difficult because they do not fulfill the above-mentioned 
requirements. 

 
To support the cross-element validation process of ABS models, this paper presents 

cross-element validation for multi-agent-based simulation (X-MAS). This tool provides facilities 
for performing easy cross-element validation of ABS models by providing a framework wherein 
several variations of some elements involved in the model can be evaluated easily without 
reimplementing the model for the numerous combinations between elements. X-MAS has been 
developed as a general-purpose library to support diverse ABS models, ranging from social 
science to engineering. 

 
To illustrate the potential of X-MAS, the cross-element validation of a bargaining game 

model was performed, comparing the results of the model with different learning mechanisms, 
such as evolution strategy (ES), learning classifier system (LCS), and reinforcement learning 
(RL), and also variations in discrete and continuous values in the representation of the 
knowledge.  

 
 This paper is organized as follows. The next section describes X-MAS and its features 
and gives a brief description of the composed layers. Then the bargaining model is described, 
including the simulation results and a brief discussion related to the experimental findings. 
Finally, a summary and future work are presented. 
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X-MAS 
 
Features 
 
 The cross-element validation for X-MAS provides a rich framework that facilitates both 
the implementation and cross-element validation of ABS models. Additionally, X-MAS 
facilitates multi-intelligent agent implementation by providing a framework that embeds the 
commonly used learning mechanisms and knowledge representation schemes of agents in ABS 
models. X-MAS is a collection of generic object-oriented programming libraries. Because of 
performance, scalability, and portability issues, it was developed in Standard C++ with extensive 
use of STL and BOOST Libraries (2005). Cutting-edge techniques of meta-programming in C++ 
were employed to provide facilities for easily exchanging elements for their substitutes in the 
model. These characteristics make it possible to satisfy the flexibility required for the cross-
element validation process that was enumerated in the previous section. X-MAS is portable, and 
the models can be compiled in several operating systems with no modifications. X-MAS only 
requires the use of compilers that support major features of the C++ Standard, including partial 
template specialization,1 which is supported in many modern compilers.  
 
 X-MAS is considered a general-purpose library for multiagent systems. The core libraries 
are highly customizable, providing the scalability to build domain-specific libraries and user-
customizable libraries. As shown in Figure 1, the simulation is developed in two levels. The left 
side represents the implementation of the model that will be executed in the back end. Then, 
visualization of the simulation results are shown and analyzed in an independent process, as 
shown in the right side of Figure 1. This structure will accelerate the simulation process. 

 
Moreover, X-MAS facilitates the maintenance of the model implementation by keeping 

the core implementation of the model in one program regardless of the possible variations of the 
element to be evaluated.  
 

 
FIGURE 1  Simulation under X-MAS (The left side represents the 
implementation of the model that is executed in the back end. Then the 
simulation results are visualized and analyzed by another process, as shown in 
the right side. Additionally, some GUI interfaces for controlling the simulation 
and the exchange of elements for performing cross-element validation are 
available.) 

                                                 
1 Most modern compilers support the major features of the C++ standard. However, even today, some compilers 

still do not support important minor features such as partial template specialization. X-MAS makes extensive use 
of the power of templates to fulfill the requirements of cross-element validation.  
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Modules 
 
X-MAS consists of three main modules or libraries, as shown in Figure 2: (1) X-MAS 

core libraries, (2) domain-specific libraries, and (3) visualization and cross-element validation 
interfaces.  
 
 
X-MAS Core Libraries 
 
 X-MAS provides a set of generic libraries and utilities for easy implementation of 
simulation models. Several algorithms commonly used in any model implementation are 
provided with a highly customizability. Some implementations, for instance, consist of the 
scheduling of agent interaction, selection algorithm, and simulation cycle control. 

 
 

Domain-specific Libraries 
 
The X-MAS framework allows the implementation of domain-specific libraries by 

customizing some of the already available libraries. X-MAS provides libraries for supporting 
intelligent agents by providing several learning mechanism algorithms such as RL, LCSs, genetic 
algorithms (GAs), and ESs. It also provides genotype-based, rule-based, and other algorithms 
with discrete and continuous values as knowledge representation schemes. Each algorithm 
provides a default setting and a highly customizable framework to include variations of the 
algorithm by allowing parts of the algorithm to be replaced with user’s algorithms, such as 
different crossover algorithms applied to GAs. 
 
 

FIGURE 2  The three X-MAS modules 
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Visualization and Cross-element Validation Interfaces 
 

The main purpose of X-MAS is to provide a set of interfaces to interact with the model. It 
includes some interfaces to visualize the simulation results of the model under all of the possible 
combinations between elements. For instance, as represented in Figure 3, it is assumed that the 
model consists of agents that have learning capabilities and representation capabilities for the 
knowledge. Three implementations for each involved element are considered. A1 to A3 and B1 
to B3 represent implementations of the possible learning mechanisms and knowledge 
representation schemes, respectively. Therefore, this may require evaluating the model with the 
nine possible combinations between both elements. As shown in the left side of Figure 3, 
X-MAS allows the implementation of one model where the combination of the involved element 
to be evaluated can be easily selected, as opposed to the nine reimplementations of the model 
with traditional tools. Furthermore, X-MAS provides interfaces to plot the simulation results of 
the model under all possible combinations among elements, as presented in the right side of 
Figure 3. Finally, from these results, the equivalence and implications of the implementations of 
the model elements can be easily evaluated. In the right side of Figure 3, the red box represents 
equivalent simulation results in six implementations of the model. Therefore, it can be said that 
the model produces invalid (strange) results when using B3 as element B, as opposed to valid 
results for the other implementations. As a consequence, the model can be minimally validated 
under implementations B1 and B2 as element B and all three implementations of element A. 
 
 This module is still undergoing development. Because of the fact that there are no 
standard graphic libraries in the C++ standard, which is a major disadvantage, some interfaces 
with Python and Java are planned for further development. 
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FIGURE 3  Image of the use of X-MAS 
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CASE STUDY 
 
 
Bargaining Game 
 
 As a concrete example, the bargaining problem (Muthoo 2000) was employed, which 
addresses a situation where two or more players try to reach a mutually beneficial agreement in 
order to maximize their profits through negotiations. This problem was selected because it has 
been studied in the context of game theory (Osborne and Rubinstein 1994) for several years, and 
its results are well known. Therefore, simulation results can be evaluated by comparing them 
with the rational behavior of players. 
 
 The problem considered in this research is the one proposed by Rubinstein (1982). This 
model uses the following scenario. Two players, P1 and P2, have to reach an agreement on the 
division of a pie. For this purpose, they alternate offers, describing the possible division upon 
which they would like to settle. The player who receives the offer has to decide whether to 
accept it or not. If the offer is accepted, the negotiation process ends, and each player receives 
the share of the pie determined by the concluded contract (e.g., P1 receives x and P2 receives 
1 − x at time t, where x is a value in the interval [0,1]). Otherwise, the receiving player makes a 
counter-offer, and all of the above steps are repeated until an agreement is reached, or the 
process is aborted when the limit number of offers is reached; in that case, both players receive a 
null payoff. 
 
 For experimentation, a finite-horizon model was employed, where the maximum number 
of steps in the game is fixed and known by both players as common information. In the case 
where the maximum number of steps is one (also known as the ultimatum game), the proposer 
(player P1) makes the only offer, and the responder player (P2) can either accept it or not. If P2 
refuses the offer, both players receive a null payoff. Since a rational player always takes actions 
that maximize her payoff, P1 tries to keep most of the pie to herself by offering only a minimum 
share to P2. Since there are no further steps to be played in the game, P2 inevitably accepts the 
tiny offer, under the notion of “anything is better than nothing.” 
 
 By applying a backward induction reasoning to the situation above, it is possible to 
analyze situations where the maximum number of steps is greater than one. For the same reason 
as that of the ultimatum game, the player who can make the last offer in a finite game where 
payoffs are not discounted by time has a great advantage to obtain the larger share2 of the pie by 
making a minimum offer (Stahl 1972). 
 
 
Model 
 
 The implemented model was designed in the framework of the bargaining game as 
follows: 
 

                                                 
2 In this paper, the terms payoff and agent are used instead of the terms share and players for their more general 

meaning in the bargaining game. 
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Model Structure 
 

The basic structure of the agents was implemented using the following components as 
shown in Figure 4. Note that each agent has the same architecture. 
 
< Memory > 
 

Strategies memory. This stores a set of strategies that agents use during negotiation (in 
Figure 4, the number of strategies is n). Each strategy consists of a fixed number of 
paired offer (O)/threshold (T) values and the worth of the strategies (w). These strategies 
are similar to those used in Oliver (1996). The offer and threshold values are encoded by 
floating point numbers in the interval [0, 1], while the worth values are calculated as 
averages of acquired payoffs. In this model, agents independently store different 
strategies, which are initially generated at random. 

 
Selected strategy memory. This stores the strategy selected to confront the strategy of an 
opponent agent. Figure 4 shows the situation where agent A1 selects the xth strategy, 
while agent A2 selects the yth strategy. 

 
< Mechanism > 
 

Learning mechanism. This modifies both offer and threshold values in order to generate 
good strategies that acquire a large payoff.  

 
 As a concrete negotiation process, agents proceed as follows. Defining as the 
ith offer or threshold value of agent A1 or A2, agent A1 starts proposing the first offer . Here, 
it is counted as one step when either agent makes an offer. Then A2 accepts the offer 
if ; otherwise, it makes a counter-offer  (i.e., the offer of A2). This cycle is repeated  
 

}2,0{},{ A
iTO

1
1
AO

21
11

AA TO ≥ 2
2
AO

 

FIGURE 4  Bargaining model structure (Each agent consists of a memory, which  
is a set of strategies the agent uses during negotiation, and a learning mechanism  
to improve the strategies.) 



8 

until either agent accepts the offer of the other agent or the maximum number of steps is 
exceeded. To understand this situation, let’s consider a simple example where the maximum 
number of steps is 10, as shown in Figure 5. Following this example, A1 starts by offering 0.01 to 
A2. However, A2 cannot accept the first offer because it does not satisfy the 
inequality . Then, A2 counter-offers 0.01 to A1. Since A1 cannot accept the 
second offer from A2 for the same reason, this process is repeated until A1 accepts the 10th offer 
from A2 where the offer satisfies the inequality 1010 . In case the negotiation 
fails, which means that the maximum number of steps has been exceeded, both agents can no 
longer receive any payoff (i.e., they receive 0 payoff). Here, this is counted as one confrontation 
when the above negotiation process ends (satisfactory or unsatisfactory.) 

)99.0()01.0( 21
11

AA TO ≥

)01.0()01.0( 12 AA TO ≥

 
 Furthermore, the worth of each strategy is calculated by the average of payoffs acquired 
during a fixed number of confrontations (CONFRONTATION), where the strategies of the other 
agent are randomly selected in each confrontation. For example, the xth strategy of A1 in 
Figure 4 confronts the randomly selected strategies of the other agent in the predefined number 
of confrontations, and then the worth of the xth strategy is calculated by the average of payoffs 
acquired during these confrontations. Since each agent has n number of strategies, the 
(CONFRONTATION × n × 2)  number of confrontations is required to calculate the worth of all 
strategies of both agents. Here, it is counted as one iteration when the worth of all strategies of 
both agents is calculated. 
 
 
Elements for Cross-element Validation 
 
 The focus of this case study is to make some comparative studies to investigate the 
influence of different learning mechanisms and knowledge representation schemes (Takadama  
et al. 2003). For this purpose, each element was designed as follows. 
 
 
Learning Mechanisms 
 
 When the learning mechanisms of agents are being implemented, several mechanisms 
can be considered. Among the many useful learning mechanisms, the following were employed: 
(1) ES (Back et al. 1991, 1993), (2) LCS (Goldberg 1989; Holland et al. 1986), and (3) RL 
(Sutton and Barton 1998).  
 
 

FIGURE 5  Negotiation process between  
two agents 
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Knowledge Representation Schemes 
 
 In the bargaining game, the representation of the agents’ strategies must be considered, 
though there are no standard guidelines. From this fact, the following two types of knowledge 
representation capabilities were employed: (1) continuous real numbers (e.g., 0.01…) and 
(2) real numbers restricted to two decimal digits (e.g., 0.01; called discrete numbers in this 
paper). The reason why this knowledge representation was employed is because (1) social 
scientists may take the latter case for a concise representation and (2) a real number in offer and 
threshold values is critical in the bargaining game.  
 
 
Simulation Results 
 
 Figure 6 shows the simulation results of the possible combinations among learning 
mechanisms (ES, LCS, and RL) with the two knowledge representation schemes (continuous and 
discrete). All figures indicate the results of the payoff. The vertical axis indicates the payoff, 
while the horizontal axis indicates the iteration number. In particular, Figure 6 shows the payoff 
of agent A1 in the lower lines and that of A2 in the upper lines. Figures 6(a) and 6(b) represent 
the results when using continuous values as knowledge representation schemes with ES and 
LCS, respectively, as learning mechanisms. Similarly, Figures 6(c), 6(d), and 6(e) represent the 
results when using discrete values as knowledge representation schemes with ES, LCS, and RL, 
respectively, as learning mechanisms. These results show that simulation results do not exhibit 
the same tendency when different learning mechanisms or knowledge representation schemes are 
applied to agents. 
 
 

FIGURE 6  Simulation results 
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Discussion 
 
 
Results of Cross-element Validation 
 
 Theoretical results from game theory prove that both rational agents A1 and A2 receive 
the minimum and maximum payoffs at the final negotiation process, respectively. This is 
because A1 in our simulations has to accept any small offer proposed by A2 at the 10th 
negotiation process; otherwise, A1 cannot receive any payoff (i.e., it receives a null payoff). 
Therefore, it was expected that learning agents can acquire the maximum and minimum payoffs. 
 
 Analyzing Figures 6(a) and 6(b) shows that the payoff of ES-based agents finally 
converges at the mostly maximum or minimum value (i.e., 1 or 0), while that of LCS-based 
agents neither converges at a certain value nor becomes close to the maximum or minimum 
value. From Figures 6(a) and 6(c), it is observed that the results of ES-based agents using 
discrete knowledge representation degrade the results obtained when using continuous 
knowledge representation (note the rather wavy lines in Figure 6(c)). Finally, from Figures 6(c) 
and 6(e), it is observed that the payoff of ES-based agents was effected using two decimal digits, 
while RL-based agents converge at the mostly maximum or minimum value (i.e., 0.9 or 0.1). 
 
 These results show that ES-based agents with continuous knowledge representations and 
RL-based agents with discrete knowledge representations could produce results as expected by 
game theory. Therefore, both models are minimally validated. 
 
 From this analysis, it can be concluded that simulation results are sensitive to the learning 
mechanisms applied to agents. Also, even minor considerations in the knowledge representation, 
particularly discrete and continuous representations, may produce unexpected results. 
 
 As a result, it is strongly recommended that some cross-element validation of models be 
performed before deep analysis and interpretation of their simulation results. 
 
 
X-MAS Compared with Other Tools 
 
 In order to help researchers in the field of social sciences simulate their models, several 
tools have been developed to reduce the difficulties of the programming process and enhance the 
understanding of the outcomes (e.g., Repast, Swarm, and Mason). However, performing 
cross-element validation will require the knowledge of some internal libraries to easily exchange 
elements in the model. In several cases, it may require reimplementation for all possible 
substitute elements in the model. The reason for this is that they are not designed for validation 
purposes but for easy program implementation. X-MAS, on the other hand, was designed to 
support the cross-element validation of ABS models and to facilitate program implementation. 
 
 X-MAS provides a framework for implementing generic models, and several variations 
of the model can be performed more easily. It is expected to be considered as a framework for 
the replication of models. 
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SUMMARY 
 
 Although ABS is becoming an essential tool in the study of complex social sciences, the 
validation of ABS models is still an important issue to be considered. Cross-element validation 
was proposed in our previous work. This process consists of performing the validation within a 
model by comparing the simulation results of the model under several instances of some of its 
composite elements. To support the cross-element validation process of ABS models, this paper 
presented the cross-element validation for multi-agent-based simulation (X-MAS). This tool 
provides facilities for simplifying the cross-element validation of ABS models. It also facilitates 
the implementation of general-purpose ABS models. The potential of X-MAS was tested by 
means of a bargaining game model, by evaluating several learning mechanisms applied to the 
agents. It showed that simulation results can be strongly affected by even small variations in the 
elements. In particular, arbitrary assumptions in the learning mechanism and knowledge 
representation schemes may produce unexpected results. Therefore, cross-element validation 
should be performed before deep analysis and interpretation of the implemented model. 
 
 Further research includes (1) implementating several GUIs for interaction with models 
and (2) performing cross-element validation of several models. 
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